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As I see it, symmetry is an artifact of us considering apparent instead of
actual structures when analyzing systems. So let’s get into it.

Say we try to describe the dynamics of a particle in space. We draw out a
coordinate system/vector space with some origin and specify that this system
has translational symmetry by saying that we can shift this origin. Alternatively,
someone could argue that we shouldn’t put in an origin at all for space in reality
has no origin. In fact the appropriate structure for describing this situation is
called an affine space, basically a vector space without an origin. In this space,
there is no translational symmetry. It is inherent in the structure! Affine spaces
only have notions of displacements, NOT position. So one may ask the question:

• Is physical space an affine space or a vector space with translational sym-
metry?

The answer is both! Modeling the world comes with many choices and based
on the structure, there are different explicit symmetries. Why then would we
ever work on a redundant or, in harsher terms, wrong structure? Why use a
vector space structure and manually insert symmetries instead of just working
on an affine space? Well the answer is: it’s just easier. Even when we do work
with affine spaces, we often construct a vector space to work on it anyway so
we can simply start there. Translational symmetry only FURTHER simplifies
the problem for us so affine spaces are actually double the work in some sense.
But this brings us to the core of what symmetry is:

Actual Structure =
Apparent Structure

Symmetry
(1)

In our case,

Affine/Physical Space =
Vector Space

Translation
(2)

Although this may seem a hand-wavey statement, we know symmetry implies
a certain equivalence under some transformation i.e. specifies an equivalence
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relation. This means we can take our apparent structure (the full set of states),
find equivalence classes under this relation i.e. construct the quotient set and
arrive at our actual structure. Hence the statement above is formally rigorous.

To really understand why this is so insightful though, let’s look at some more
examples.

• Quantum Field Theory: In quantum mechanics, people often get their
first experience to the exchange symmetry with the Hydrogen atom.
Here, we specify that two electrons are indistinguishable meaning they
represent the same physical state if swapped. This fact however, is man-
ually and awkwardly added in an ad-hoc manner. Why? Because the
actual structure of the electrons is a field! Not particles.

Quantum Field =
Many Quantum Particles

Exchange
(3)

• Topology: How do we usually phrase the definition of topology? As some
geometric object that is defined only up to deformations. This is because
the concept of deformation and geometry are easy to grasp but we can’t
even begin to think about pure topological structures!

Topology =
Geometry

Deformation
(4)

• Conformal Manifolds: Conformal spaces are spaces that only have a
notion of angle. They are often however phrased as

Conformal Space =
Space

Angle-Preserving Maps
(5)

For manifolds of greater than 3 dimension, we often define a conformal
manifold as

Conformal Manifold =
Riemannian Manifold

Scaling
(6)

i.e. we give a notion of angle by giving a notion of dot product and taking
away the magnitude.

• Relativity: We can succinctly phrase relativity as the following.

Physics =
Our Models

Moving the Observer
(7)

• Notation: Many times, our notation for certain structures has MORE
structure than what it wishes to represent. For example, a set {a, b, c} has
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no order but it must have one when written down. We must then specify
that this phrase has a symmetry under permutation of its elements.

Structure =
Notation

Notational Redundancy
(8)

Although seemingly trivial, it can become nontrivial in cases like Feyn-
mann diagrams. For example, see the diagram below. It is clear that A
and B represent the same process of an electron and positron annihilating
into a photon but the third process C represents an electron turning into
an electron and photon. We must make it clear then that a diagram is
only partially deformable when drawn out. It turns out however that the
physical theory has a crossing symmetry which makes the amplitudes
for C equivalent to A and B. This means we can absorb this symmetry
by simply releasing our restrictions on the notation. In this case, we got
lucky where the interpretation without symmetry was simpler than with
symmetry which is why we rarely discuss the crossing symmetry.

Unrestricted Diagrams =
Restricted Diagrams

Crossing Symmetry
(9)

Hopefully, this fairly diverse set of examples drives home this understanding
of symmetry as marking the gap between apparent and actual structures.
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