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1 Introduction

Semiclassics is defined by

ψ(x, t) = ψ(xi, ti)e
i
ℏS(x,t;xi,ti) (1)

where S is simply the purely classical principal function from Hamilton-Jacobi
theory.

This result can be viewed from two angles. One is starting with quantum
mechanics and taking the limit ℏ → 0 which is the usual and an important
method. The other is to merely quantize a classically evolving system (I will
elaborate on what this means in the article.) 1

The beautiful result is that these approaches are the same. Semiclassics is
this wonderful midpoint where we are just barely short of quantum mechanics
while only relying on classical mechanics.

In this short article, I lay out three methods for getting to semiclassics: let-
ting ℏ → 0 in Schrodinger QM, letting ℏ → 0 in Feynmann QM, and quantizing
just the ontology of classical mechanics vis-a-vis Dirac. I assume an understand-
ing of Hamilton-Jacobi theory.

2 Schrodinger QM

Start by considering the wavefunction defined by some

ψ(x, t) = ψ(xi, ti)e
iK(x,t)/h (2)

Let Ĥ be a well-ordered Hamiltonian i.e. all x̂ are to the left of all p̂. All
Hamiltonians can be put in this form. This then aligns really well to a classical
function H(x, p). Now note that

(
−iℏ ∂

∂x

)
ψ =

∂K

∂x
ψ (3)

1The latter was done in a paper by Dirac that inspired Feynmann’s path integral
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(
−iℏ ∂

∂x

)2

ψ = −iℏ∂
2K

∂x2
ψ +

(
∂K

∂x

)2

ψ (4)

As ℏ → 0, the second derivative term reduces to

(
−iℏ ∂

∂x

)2

ψ =

(
∂K

∂x

)2

ψ (5)

As we keep applying higher order derivatives, this will keep happening giving
us

(
−iℏ ∂

∂x

)n

ψ =

(
∂K

∂x

)n

ψ (6)

From this, we can easily generalize to the result

f(x̂)g(p̂)ψ = f(x)g

(
∂K

∂x

)
ψ (7)

Ultimately then, it is clear that

Ĥψ = H
(
x,
∂K

∂x
, t

)
ψ (8)

Finally, the Schrodinger equation will then read

−∂K
∂t

= H
(
x,
∂K

∂x
, t

)
(9)

But this is exactly the Hamilton-Jacobi equation so K = S(x, t;xi, ti) taking
into account boundary conditions.

3 Feynmann QM

This one is the most well known. Consider the propagator in the path integral
formulation.

ψ(xf , tf ) = ψ(xi, ti)

∫ xf ,tf

xi,ti

Dx e i
ℏS[x] (10)

We simply apply stationary wave approximation to the integrand and get
that

ψ(xf , tf ) = ψ(xi, ti)e
iSc (11)

where

Sc = S[ξ] (12)

for δS|ξ = 0. This is exactly the principal function.
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4 Generating functions vis-a-vis Dirac

This is, in my opinion, the slickest and most beautiful proof of the semiclassical
expression. Generating functions of the first kind F (q,Q, t) generate canonical
transformations via the equations

p =
∂F

∂q
(13)

P = −∂F
∂Q

(14)

Consider quantizing these expressions where F is well-ordered in the sense
that is a sum of terms of the form f(q)g(Q). It can be shown that

⟨q|Q⟩ = e
i
ℏF (15)

Consider that

⟨q|p|Q⟩ = −iℏ ∂
∂q

⟨q|Q⟩ (16)

⟨q|P |Q⟩ = iℏ
∂

∂Q
⟨q|Q⟩ (17)

But given the well-ordered form of F ,

⟨q|p|Q⟩ = ∂F

∂q
⟨q|Q⟩ (18)

⟨q|P |Q⟩ = −∂F
∂Q

⟨q|Q⟩ (19)

Combining the expressions above, up to a constant, we get our desired result.
Now our result is a one-liner: the principal function generates time evolution

hence our desired semiclassical expression. Namely,

⟨qt+τ |qt⟩ = e
i
ℏS(qt+τ ,t+τ ;qt,t) (20)

Note that |qt+τ ⟩ ≠ e−iHt|qt⟩. It is simply the eigenket for the operator had
it evolveed classically. This is the sense in which semiclassics is quantum in
form but really classical in spirit.
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